-32y^2+72y+0=0

Simple and best practice solution for -32y^2+72y+0=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -32y^2+72y+0=0 equation:



-32y^2+72y+0=0
We add all the numbers together, and all the variables
-32y^2+72y=0
a = -32; b = 72; c = 0;
Δ = b2-4ac
Δ = 722-4·(-32)·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-72}{2*-32}=\frac{-144}{-64} =2+1/4 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+72}{2*-32}=\frac{0}{-64} =0 $

See similar equations:

| 8x-99=171-2x | | 7x-x-6x=8 | | C-4=3c+9 | | Z-3z=9z-1-1z | | 101/2t=21/8 | | 10h+h-6h=5 | | 64+(4(3x+2))=180 | | Y=41-x/2 | | 3^2+x-7=4x | | f-3.8=9.2 | | a÷4+3=14 | | 15,53=q^2+3q+2 | | 10=0,5q+3 | | 15,52786405=q^2+3q+2 | | 8*(x-3)=24 | | 2×^4-26x^2+72=0 | | y+4y+3=0 | | 10=q^2+3q+2 | | 1440=3x+6+41+6x-5+7x-11+4x+7+62 | | 3q+q^2=-2 | | s=50(5)+25 | | Q^2+3q=-2 | | s=50(6)+25 | | -3x+9=65 | | 45*2=3x | | 1080=16x+23(8) | | 7h-30=30 | | 18x+6=3+6x | | 5+3(x+5)-6(x-13)-2(x+7)=5(x-9)+4 | | 3(2-0.4y)=18 | | 6730=40x+1.5(20)x+2.5(10)x | | 100x+80=120*(40x-300) |

Equations solver categories